Зачем учить математику
«Математику уже затем учить надо, что она ум в порядок приводит». М.В. Ломоносов
Математика – уникальный предмет. Она незаменима для развития у детей:
- логического мышления;
- памяти;
- речи;
- воображения.
Участвует в формировании настойчивости, терпения, творческих способностей личности. Учит анализу и синтезу, планированию своих действий, максимально точному изложению мыслей, умению обосновывать имеющуюся точку зрения. Помогает знакомить детей дошкольного возраста с окружающим миром.
Знания математического содержания нужны ребёнку для успешности социальной адаптации, а также, для ориентировании во всё более развивающихся информационных и технологических процессах в обществе.
С какого возраста и как обучать
Пяти-, шестилетки весьма активны в вопросах познания и освоения окружающей их действительности. Дети дошкольного возраста очень любят задавать вопросы, особенно любимым становится вопрос «почему?». Они стараются разобраться в устройстве какой-либо вещи, начинают устанавливать причину и следствие каких-либо событий, происходящих вокруг. Эти вопросы и навыки весьма полезны не только для общего развития, но и для обучения. Поэтому с 5-6 лет уже можно активно обучать их математике. Бывает, что ребёнок и более младшего возраста (3-4 лет) также интересуется предметом. В этом случае, не нужно дожидаться достижения им 5-6 лет, чтобы приступить к занятиям.
Знакомство с цифрами можно начинать с 3-х лет
Следуйте за интересами своего дошкольника, прислушивайтесь к нему, старайтесь сохранить его естественный природный интерес к предмету. Ваши старания будут вознаграждены. В то же время ни в коем случае не следует «навязывать» детям необходимость изучать предмет, т.к. можно добиться обратного эффекта – нежелания учиться, отсутствия заинтересованности.
Основной вид деятельности дошкольников – это игра, поэтому при обучении и следует пользоваться всем многообразием её возможностей. Не следует стремиться проводить с ребёнком полноценные занятия, как в детском саду или центре. У вас в приоритете должны быть совсем другие формы: прогулки, экскурсии, игры с природными материалами (водой, песком), конструкторы, совместные занятия домашними делами, чтение и знакомство с элементами фольклора (считалками, скороговорками), настольные игры, ситуационные игры (магазин, поезд) – в общем, всё, что подскажет ваша фантазия, воображение, жизненный опыт.
Математическая игра “Рыбка” – интересное обучение
Совет родителям: ко времени поступления в первый класс ваш малыш должен освоить применение знаний математики в важных для него практических занятиях: играх, экспериментах, быту.
Какие способности относятся к математическим у детей до 7-ми лет
Не стоит думать, что математические способности подразумевают под собой только умение быстро и точно считать. Это заблуждение. Математические способности включают в себя целый комплекс умений, направленных и на творческий подход, и логику, и счет.
Быстрота подсчета, способность запоминать большой массив цифр и данных не являются подлинными математическими способностями, так как даже медленный и обстоятельный ребенок, который вдумчиво занимается может успешно постигать математику.
К математическим способностям относится:
- Способность обобщения математического материала.
- Умение видеть общее у разных предметов.
- Возможность найти главное в большом количестве различной информации и исключить не нужное.
- Пользоваться числами и знаками.
- Логическое мышление.
- Способность ребенка мыслить абстрактными структурами. Умение отвлечься от решаемой задачи и увидеть полученную картину в целом.
- Мыслить как прямо, так и в обратной последовательности.
- Умение самостоятельно мыслить, не используя шаблонов.
- Развитая математическая память. Способность использовать полученные знания в различных ситуациях.
- Пространственное мышление – уверенное использование понятий «верх», «низ», «право» и «лево».
Элементарные математические представления дошкольников
Итак, способности к математике выходят далеко за рамки арифметики и развиваются на основе мыслительных операций. Но, как слово является основой речи, так и в математике существуют элементарные представления, без которых говорить о развитии бессмысленно.
Малышей необходимо обучать счету, знакомить с количественными соотношениями, расширять познания геометрических фигур. К концу дошкольного возраста ребенок должен иметь базовые математические представления:
- Знать все цифры от 0 до 9 и узнавать их в любой форме написания.
- Считать от 1 до 10, как в прямом, так и обратном порядке (начиная с любой цифры).
- Иметь представление о простых порядковых числительных и уметь ими оперировать.
- Выполнять операции сложения и вычитания в пределах 10.
- Уметь уравнивать количество предметов в двух наборах (В одной корзинке 5 яблок, в другой – 7 груш. Что нужно сделать, чтобы фруктов в корзинках было поровну?).
- Знать основные геометрические фигуры и называть отличающие их признаки.
- Оперировать количественными соотношениями «больше-меньше», «дальше-ближе».
- Оперировать простыми качественными соотношениями: самый большой, самый маленький, самый низкий и пр.
- Понимать сложные отношения: «больше, чем самый маленький, но меньше других», «впереди и выше других» и пр.
- Уметь выявлять лишний объект, не подходящий к группе остальных.
- Выстраивать простые ряды по возрастанию и убыванию (На кубиках изображены точки в количестве 3, 5, 7, 8. Расставить кубики так, чтобы количество точек на каждом последующем уменьшалось).
- Находить соответствующее место объекта с числовым признаком (На примере предыдущего задания: расставлены кубики с точками 3, 5 и 8. Куда поставить кубик с 7 точками?).
Этот математический «багаж» предстоит накопить ребенку до поступления в школу. Перечисленные представления относятся к элементарным. Без них изучать математику невозможно.
Среди базовых умений есть совершенно простые, которые доступны уже в 3-4 года, но есть и такие (9-12 пункты), которые используют простейший анализ, сравнение, обобщение. Им предстоит сформироваться в процессе игровых занятий в старшем дошкольном возрасте.
Перечень элементарных представлений можно использовать для выявления математических способностей дошкольников. Предложив ребенку выполнить задание, соответствующее каждому пункту, определяют, какие умения уже сформированы, а над какими нужно поработать.
Необходимые знания и навыки
Перед поступлением в 1 класс дети должны освоить определенные умения — владеть карандашом и ручкой, уметь штриховать, рисовать и раскрашивать, познакомиться с буквами. На занятиях же математикой им нужно будет научиться еще большему:
- разобраться с такими понятиями как число и множество, форма предмета, величина;
- освоить навык ориентирования в пространстве;
- получить навыки счета, измерения и сравнения;
- научиться оперировать некоторыми математическими терминами (больше-меньше, равно, узкий-широкий, длинный-короткий и т. п.).
В процессе занятий у детей формируются навыки анализа и синтеза, обобщения и сравнения, расширяется активный речевой словарь. Само постепенное формирование математических представлений не только способствует боле успешному обучению детей в школе, но и развивает мышление. Поэтому дидактическим математическим играм уделяется значительное внимание.
Особенно это важно для детей, имеющих нарушения в развитии речи. Недостаточно развитый словарь, нередко сопутствующее отставание формирования высшей нервной деятельности приводят к тому, что детям труднее даются математические упражнения. Важно уделять в том случае играм большее внимание, соблюдая правило «от простого к сложному». Индивидуальный подход играет значительную роль, позволяя ребенку осваивать необходимые навыки в нужном ему темпе.
Каким образом формируются математические способности
Все способности, в том числе и математические, не являются предопределенным навыком. Они формируются и развиваются через обучение и закрепляются практикой. Поэтому важно не только развить ту или иную способность, но и совершенствовать ее путем практических упражнений, доводя до автоматизма.
Любая способность проходит несколько этапов в своем развитии:
- Познание. Ребенок знакомится с предметом и узнает необходимый материал;
- Применение. Применяет новые знания в самостоятельной игре;
- Закрепление. Возвращается к занятиям и повторяет ранее изученное;
- Применение. Использование закрепленного материала при самостоятельной игре;
- Расширение. Происходит расширение знания о предмете или способности;
- Применение. Ребенок дополняет самостоятельную игру новым знанием;
- Адаптация. Знание переносится из игровой ситуации в жизнь.
Любое новое знание должно пройти несколько раз через этап применения. Давайте ребенку возможность использовать полученные данные в самостоятельной игре. Детям нужно некоторое время, чтобы осмыслить и закрепить каждое незначительное изменение в знаниях.
В случае, если ребенок не сможет через самостоятельную игру усвоить полученный навык или знание, высока вероятность того, что оно не будет закреплено. Поэтому после каждого занятия отпускайте малыша поиграть или отвлекитесь, поиграйте с ним. Во время игры покажите, как использовать новые знания.
Как развить математические способности у ребенка
Начинать математическое развитие нужно в виде игры и использовать вещи, которые заинтересуют малыша. Например, игрушки и бытовые предметы, с которыми он сталкивается каждый день.
С того момента, когда ребенок проявит интерес к тому или иному предмету родитель начинает показывать ребенку, что предмет можно не только рассматривать и трогать, но и совершать с ним разные действия. Акцентируя внимание на некоторых признаках предмета (цвет, форма), в ненавязчивой манере можно показать разницу в количестве предметов, ввести первые понятия о множественном и пространственном положении.
После того, как ребенок научится разделять предметы по группам, можно показывать, что их можно считать и сортировать. Обратить внимание на геометрические особенности.
Развитие математических способностей должно идти одновременно с основами операций с числами.
Любое новое знание должно быть преподнесено при явном интересе ребенка к обучению. При отсутствии заинтересованности в предмете и его изучении, обучение ребенка проводить не стоит. Важно соблюдать баланс в обучении ребенка, чтобы развивать любовь к математике. Практически все проблемы, связанные с изучением основ этой дисциплины, имеют свое начало в первоначальном отсутствии желания познать.
Математическое развитие детей раннего возраста
Когда происходит организация процесса педагогической работы с детьми раннего возраста, не стоит забывать, что сформировавшееся мнение у ребенка о математических значениях, геометрических фигурах, пространстве является одним из самых главных моментов познания мира, который его окружает. То, что вложится на данном этапе, будет играть значительную роль в будущих логических, умственных и математических способностях у ребенка. Исходя из этого, педагоги советуют при организации такого процесса в возрасте от двух до трех лет заниматься с ребенком не меньше двух раз в неделю. Очень важно помнить, что необходимо в эти занятия включать сенсорное развитие ребенка, оно имеет очень большой вес в обучении. После определенного изученного материала, не стоит забывать закреплять это в повседневных действиях:
• Работа с конструктором.
• Лепка.
• Рисование.
• Игры для математического развития для детей.
• При прогулках.
Прежде, чем начать занятия с ребенком, необходимо тщательно подготовиться. Нужно подобрать средства занятия, которые смогут в течении 15-20 минут сосредоточить внимание малыша. Так же необходимо во избежание усталости ребенка менять действия в процессе. Главное в педагогических занятиях — уметь дозировать материал обучения, преподать его доступно и интересно для малыша раннего возраста. Не забывайте, что все обучение чаще всего должно происходить в игровой форме.
Игры для математического развития для детей:
1. Что двигается? Такая игра ознакомит малыша с предметами, их формами. Игра проходит в интересном и веселом соревновании. Из фигур строятся игрушечные ворота, кто быстрее докатит свою фигуру до них, тот и победил. Фигуры в свою очередь должны быть в виде шаров и кубиков. Очень важно помнить, что в этой игре нельзя поддаваться ребенку. Изначально малыш не будет обращать внимание на форму фигуры, и ему будет не важно, какой играть. Но в дальнейшем он начнет понимать, что шарик катить удобней и он постоянно побеждает — будет стремиться выбрать именно эту фигуру. Не упустите этот момент, и задайте вопрос, почему ребенок желает играть именно шаром, и постарайтесь вместе логически поразмышлять. Например, что углы у кубика острые и мешают так быстро двигаться как шарик.
2. Одеваем кукол. Дети раннего возраста довольно быстро начинают ориентироваться в размерах предметов, их однотипности. Для этой игры необходимо дать две куклы разных размеров и два вида одежды (побольше и поменьше). Не говорите ребенку, какой из комплектов принадлежит большой кукле, а какой — маленькой, просто предложите ему одеть своих кукол. Ребенок сам должен это определить, в этом и заключается суть игры. Не расстраивайтесь, если с первого раза ребенок оденет их наоборот, начните с ним логический разговор, о том, что платье мало или велико.
3. Собираем урожай. Например, сбор яблок, для этого подойдут любые шарообразные предметы разной формы. Разлаживаем их по разным коробкам в зависимости от размеров (большие — к большим, средние — к средним, маленькие — к маленьким). Урожай можно выбрать любой, лучше всего, опираясь на предпочтения ребенка, так ему будет интересней.
4. Найди одинаковый. Разложите разные фигуры и предложите ребенку из всех выбрать одинаковый по цвету, размеру и форме с тем, который вы будете держать. В такой игре Вам можно делать ошибки и указывать на них, чтобы в дальнейшем ребенок сам замечал и указывал вам на эти ошибки.
5. Что загадали. В данной игре малыш учится ориентироваться в пространстве. Родителям понадобятся различные игрушки больших размеров (подойдут и куклы, и мягкие зайчики, мишки). Малыша посадите в центр, а выбранные игрушки — вокруг него. Родители загадывают любую из игрушек, а ребенок должен ее отгадать, основываясь на подсказки от папы и мамы. Например, где сидит игрушка – сбоку, сзади или спереди, какого цвета и т.д. Если малыш с легкостью угадывает, попробуйте усложнить подсказки. Важно заставить ребенка думать.
6. Покажи по-разному. Для данной игры необходимо минимум два ребенка. Одно и тоже слово, фигуру дети должны показать в разной интерпретации. Так ребенок знакомится с антонимами и в то же время учится мыслить.
Математическое развитие детей 3-4 лет
Многие взрослые считают, что не стоит нагружать детей 3-4 лет такой сложной наукой, как математика. По их мнению, для этого придуманы школы — это очень ошибочное решение. В таком раннем возрасте не стоит задача научить ребенка считать уравнения и примеры, стоит задача научить малыша логически мыслить, заставить ребенка думать перед каждым своим действием.
В этом возрасте уже можно учить ребенка количеству, величине, геометрическим фигурам, ориентированию в пространстве, ориентированию во времени. Все обучение проходит в игровой форме, с обязательным повторением для закрепления материала.
Математическое развитие детей в семье
Логико-математическое развитие ребенка в семье происходит под управлением взрослого человека и постепенно. В процесс развития входят постоянные занятия, которые направлены на ориентирование в пространстве, изучение количественного значения, ориентирование во времени. Детям дошкольного возраста обязательны основы математики.
Из чего же состоит логико-математическое развитие детей дошкольного возраста:
1. Изучение количества (сложение, вычитание, сравнение, умножение, деление и т.д.). Но это только арифметика, многие думают, что на этом математическое развитие должно быть окончено. Это большая ошибка. Есть еще масса дисциплин в этом процессе.
2. Геометрия. Название говорит само за себя. Это процесс изучения фигур, их формы, цвет, размеры и т.д.
3. Математику понять не сложно, достаточно разобраться в ее признаках, особенностях. Очень важно научиться классифицировать предметы по их признакам и особенностям, уметь сравнивать и видеть отличая. Существуют средства математического развития детей – их нужно иметь дома.
4. Вторая самая важная дисциплина на начальном этапе развития – это, конечно же, логика. Если у ребенка не будет логического мышления, то и с математическими задачами ему справиться будет крайне сложно. Вначале это простая логика окружающего мира (все произошло так, потому что… или не произошло, если мы хотим чтобы что-то произошло, мы должны…, или наоборот и т.д.) Необходимо объяснять ребенку, что у всего происшедшего есть своя причина. Не забывайте обыгрывать ситуации.
Математическое развитие выполняется:
1. Ежедневно само по себе. В этом случае родители используют ситуации, которые произошли сами по себе в логико-математических целях. Например, мама на кухне готовит ужин и просит ребенка подать две луковицы — одну маленькую, вторую большую. Дети очень любят такие совместные работы. Аналогично можно использовать такую игру и при уборке, глажке и т.д.
2. При обучении взрослыми. Важно не забывать, что маленькие дети воспринимают лучше всего эмоциональную информацию. При специальных занятиях используйте побольше стишков, игр, загадок, считалок, песенок. Игры – это основа обучения детей дошкольного возраста.
Методика математического развития детей дошкольного возраста довольно сложная и требует максимум времени и усилий. Все занятия и игры на первоначальном этапе не должны превышать 20-30 минут. Иначе ребенку станет не интересно, и второй раз его будет сложно заинтересовать. Не страшно, если игра будет длиться 10-15 минут, главное — не отбить у ребенка желание играть в дальнейшем.
Как заинтересовать детей математикой в начале занятия
Для активизации внимания своих воспитанников педагог может использовать в работе стихотворения, загадки, дидактические игры, костюмированные представления, демонстрацию иллюстраций, просмотр мультимедийных презентаций, видео или мультипликационных фильмов. Сюрпризный момент обычно выстраивается вокруг популярного и любимого детьми сказочного или литературного сюжета. Его герои создадут интересную ситуацию, оригинальную интригу, которая вовлечёт детей в игру или пригласит в фантастическое путешествие:
- «Сказка в гости нас зовёт» — воспитатель вместе с детьми приглашает русскую народную сказку «Теремок». Волшебный домик откроет дверь только тому, кто разгадает все загадки и решит все задачи.
- «Сказочная школа» — педагог рассказывает детям в начале занятия, что утром почтальон принёс письмо и посылку, адресованные им. В письме от учеников сказочной школы сказано, что для того, чтобы открыть загадочную коробку и получить подарок нужно пройти испытания которыми станут математические задания.
- «Королевство занимательной математики» — педагог обращается к практике элементов театральной игры, например, перевоплощается в Королеву Математики и становится проводником в волшебную страну с приключениями в форме увлекательных математических упражнений.
Что делать, если ребенку неинтересно
Если ребенок при каждой попытке обучить его основам математики уходит и скучает, то нужно:
- Поменять форму преподнесения материала. Вероятнее всего ваши объяснения слишком сложные для понимания ребенком и не содержат игровых элементов. Дети дошкольного возраста не могут воспринимать информацию в классическом виде урока, им нужно показывать и рассказывать новый материал в ходе игры или развлечения. Сухой текст не воспринимается ребенком. Примените в обучении дидактические игры или попробуйте задействовать в обучении непосредственно ребенка;
- Проявите интерес к предмету без участия ребенка. Дети младшего возраста интересуются всем, что интересно их родителям. Они любят подражать и копировать взрослых. Если ребенок не проявляет интерес к какому-либо занятию, то попробуйте на глазах у ребенка начать играть с выбранными предметами. Вслух рассказывайте о том, что вы делаете. Показывайте собственную заинтересованность процессом игры. Ребенок увидит ваш интерес и присоединится;
- В случае, если ребенок все равно быстро теряет интерес к предмету, нужно проверить, не является ли то знание и умение, которое вы хотите ему привить, слишком сложным или легким;
- Помните о длительности занятий для разного возраста. Если ребенок до 4-х лет потерял интерес к предмету через 5 минут, то это нормально. Так как в этом возрасте ему сложно долго концентрироваться на одном предмете.
- Попробуйте вводить в занятие по одному элементу за раз. Для детей 5-7 лет длительность занятий не должна превышать 30 минут.
- Не стоит расстраиваться, если ребенок не захочет заниматься в конкретный день. Нужно попробовать привлечь его к обучению спустя некоторое время.
Главное, помнить:
- Материал должен быть адаптирован к возрасту ребенка;
- Родитель должен проявлять интерес к материалу и результатам ребенка;
- Ребенок должен быть готов к занятию.
Как развивать математическое мышление
Порядок научения ребенка математическому мышлению представляет собой связанные между собою занятия, которые преподносятся в порядке усложнения материала.
1. Начинать обучение нужно с понятий о пространственном расположении предметов
Ребенок должен понять, где находится право – лево. Что такое «выше», «ниже», «перед» и «за». Наличие этого навыка позволяет воспринимать все последующие занятия проще. Ориентирование в пространстве — основополагающее знание не только для развития математических способностей, но и для обучения ребенка чтению и письму.
Можно предложить ребенку следующую игру. Возьмите несколько его любимых игрушек и положите перед ним на разном расстоянии. Попросите его показать, какая игрушка находится ближе, какая дальше, какая левее и т.д. При появлении затруднений при выборе, подскажите правильный ответ. Используйте в этой игре различные варианты слов, которые определяют расположение предметов относительно малыша.
Употребляйте такой подход к изучению и повторению не только в процессе занятий, но и в обыденной жизни. Например, предложите ребенку определить пространственное расположение предметов на детской площадке. Чаще в обычной жизни обращайтесь с просьбой подать что-либо, ориентируя малыша в пространстве.
Параллельно с пространственным мышлением обучают обобщению и классификации предметов по их внешним признакам и функциональной принадлежности.
2. Изучите понятие множества предметов
Ребенок должен различать понятия много — мало, один — много, больше — меньше и поровну. Предложите игрушки разного вида в разном количестве. Предложите сосчитать их и сказать много их или мало, каких игрушек меньше и наоборот, также показывайте равенство игрушек.
Хорошая игра на закрепление понятия множества — «Что в коробочке». Ребенку предлагается две коробки или ящичка, в которых находится разное количество предметов. Путем перемещения предметов между коробками ребенку предлагается сделать количество предметов больше или меньше, уровнять. В возрасте до 3-х лет количество предметов не должно быть большим, чтобы ребенок мог наглядно оценить разницу в предметах без подсчета.
3. Важно в раннем детстве обучить ребенка простым геометрическим фигурам
Научите ребенка видеть их в окружающем мире. Хорошо для развития знания геометрических фигур использовать аппликации из математических форм. Покажите ребенку рисунок предмета с четкими контурами (дом, машина). Предложите сделать из заготовленных треугольников, квадратов и кругов образ предмета.
Покажите и объясните, что такое угол у фигур, предложите ребенку догадаться, почему «треугольник» носит такое имя. Предложите ребенку для ознакомления фигуры с большим количеством углов.
Закрепление геометрических знаний проведите через рисование изученного материала, складывания разных фигур из других предметов (палочек, камушков и т.д.). Можно использовать пластилин и другие материалы, позволяющие создавать различные формы.
Попросите нарисовать ряд фигур разного типа, посчитайте их вместе с ребенком. Спросите, каких фигур много, а каких мало.
На прогулке с ребенком обратите внимание на форму домов, лавочек, машин и т.д. Покажите, как сочетание различных фигур между собой может создавать новые и знакомые предметы.
4. Умение ориентироваться в пространстве и классифицировать предметы позволяет научить измерению размера предмета
Раннее обучение измерения длины линейкой и при помощи сантиметров не рекомендуется, так как это будет сложный для восприятия материал. Попробуйте измерять предметы с ребенком при помощи палочек, ленточек и других подручных материалов. В этом обучении вложено не само измерение, а принцип его проведения.
Большинство педагогов советуют обучать ребенка измерению при помощи счетных палочек. Они обосновывают это удобством для ребенка и приучению его пользоваться специальным материалом. Эти палочки пригодятся при изучении единиц счета. Также их можно использовать как наглядный материал при работе с книгами (отложить палочку по количеству героев), изучении геометрических фигур (ребенок может выложить палочками нужную фигуру) и т.д.
5. Количественные измерений
После изучения базовых математических понятий можно переходить к количественным измерениям и изучению чисел. Изучение чисел и их письменного обозначения происходит с раннего возраста по определенной системе.
6. Сложение и вычитание
Только после освоения количественных измерений и чисел стоит вводить сложение и вычитание. Сложение и вычитание вводится в возрасте 5-6 лет и представляет собой простейшие операции на одно действие с малыми числами.
7. Деление
Деление в дошкольном возрасте вводится только на уровне долей, когда ребенку предлагается разделить предмет на равные доли. Количество таких частей не должно превышать четырех.
8. Упражнения на развитие анализа и синтеза
1.По-порядку становись! Игра на упорядочение объектов по размеру. Подготовить 10 одноцветных полосок из картона одинаковой ширины и различной длины и разложить их хаотично перед дошкольником.
Инструкция: «Расставь «спортсменов» по росту от самого низкого до самого высокого». Если ребенок затрудняется с выбором полоски, предложите «спортсменам» мериться ростом.
После выполнения задания предложите ребенку отвернуться и поменяйте местами некоторые полоски. Дошкольнику предстоит вернуть «хулиганов» на свои места.
2.Сложи квадрат. Подготовьте два набора треугольников. 1-ый — один большой треугольник и два маленьких; 2-ой – 4 одинаковых маленьких. Предложите ребенку сначала сложить квадрат из трех деталей, затем из четырех.
Рисунок 1.
Если дошкольник на составление второго квадрата затрачивает меньше времени, значит, пришло понимание. Способные дети справляются с каждым из этих заданий менее чем за 20 секунд.
9. Упражнения на абстрагирование и обобщение
1.Четвертый лишний. Понадобится набор карточек, на которых изображены четыре предмета. На каждой карточке три объекта должны быть связаны между собой существенным признаком.
Инструкция: «Найди, что на картинке лишнее. Что не подходит ко всем остальным и почему?».
Рисунок 2.
Такие упражнения стоит начинать с простых групп объектов и постепенно усложнять. Например, карточку с изображением стола, стула, чайника и дивана – можно применять в занятиях с 4-летними детьми, а наборы с геометрическими фигурами предлагать старшим дошкольникам.
2.Построй заборчик. Необходимо подготовить не менее 20 полосок равной длины и ширины или счетные палочки двух цветов. Для примера: синего цвета – С, и красного – К.
Инструкция: «Давай построим красивый заборчик, где чередуются цвета. Первой будет синяя палочка, за ней – красная, далее… (продолжаем выкладывать палочки в последовательности СКССККСК). А теперь ты продолжи строить забор, чтобы был такой же узор».
В случае затруднения обращать внимание ребенка на ритм чередования цветов. Упражнение можно выполнять несколько раз с различным ритмом узора.
10. Логико-математические игры
1.Мы едем-едем-едем. Необходимо подобрать 10-12 прямоугольных картинок с изображением хорошо знакомых ребенку предметов. Играет ребенок в паре с взрослым.
Инструкция: «Сейчас мы составим поезд из вагончиков, которые будут прочно между собой связаны важным признаком. В моем вагончике будет чашка (кладет первую картинку), а чтобы твой вагончик присоединился, можно выбрать картинку с изображением ложки. Чашка и ложка связаны, потому что это посуда. Я дополню наш поезд картинкой с совочком, так как совочек и ложка имеют похожую форму и т.д.»
Поезд готов отправиться в путь, если все картинки нашли свое место. Можно смешать картинки и вновь начать игру, находя новые взаимосвязи.
2.Почини коврик. Задания на поиск подходящей «заплатки» для коврика вызывают живой интерес у дошкольников разного возраста. Для проведения игры необходимо изготовить несколько картинок, на которых изображен коврик с вырезанным кругом или прямоугольником. Отдельно необходимо изобразить варианты «заплаток» с характерным узором, среди которых ребенку придется найти подходящий для коврика.
Начинать выполнять задания необходимо с цветовых оттенков коврика. Далее предлагать карточки с простыми узорами ковриков, и по мере развития навыков логического выбора, усложнять задания по образцу теста Равена.
Рисунок 3.
«Починка» коврика развивает одновременно ряд важных аспектов: наглядно-образные представления, мыслительные операции, способность к воссозданию целого.
11. Головоломки
Главная особенность головоломок – их универсальность: вне зависимости от возраста, ситуации и стадии обучения они будут эффективны для развития ребенка. Головоломки относятся к занимательной математике не только потому, что в основе почти любой головоломки лежит некий математический замысел, но и потому, что решение головоломки, по своему духу, близко к решению математических проблем.
Кубик Рубика, змейка Рубика, металлические и деревянные объёмные головоломки увлекут не только детей-дошкольников, но и родителей. Решение головоломок может стать отличным хобби для ребёнка. .
12. Пазлы
Собирая картинку из маленьких разрозненных частей, ребёнок не просто весело проводит время, но и учится систематизировать, анализировать, тренирует способность решать задачу многогранно.
Ведь чтобы правильно собрать пазл, нужно учесть множество факторов — форму фрагмента, последовательность сборки, и, конечно, представлять конечный результат. Начиная с простых пазлов с крупными деталями, дошкольник постепенно перейдёт к наборам с большим количеством уже мелких деталей, а дальше и к 3-D пазлам, что будет способствовать развитию математических способностей.
Как видите, существует огромное количество способов, которые помогут вашему ребёнку понять и усвоить математическую науку. Важно помнить, что ни одно супер-пособие не сделает из ребёнка гения математики, если вы купите его, но не станете заниматься с ребёнком вместе.
Для получения хороших результатов, очень важно, чтобы родители занимались с ребёнком систематически. Играйте в игры, решайте головоломки, считайте машины, птиц, сравнивайте окружающие предметы, отмечайте в календаре дни недели, складывайте камушки, палочки, листочки — и результатом этого станет хорошая успеваемость вашего ребёнка в школе и во взрослой жизни!
5 шагов, как развивать математические способности у ребёнка
Развивать математические способности у дошкольника родитель может самостоятельно. Вот основные шаги, которые помогут малышу с лёгкостью понять мир цифр.
1. Учим ребёнка сравнивать предметы.
Сначала малышу нужно освоить понятия, затем он без проблем сможет их сравнить. Если ребёнок знает, какой смысл спрятан в слове «большой», а что значит «маленький», то сравнить предметы по размеру ему будет несложно. Например: «Смотри, какая на парковке большая машина! А твоя игрушечная машинка маленькая». Проговаривая эти слова, желательно поставить два предмета рядом и показать руками в высоту и ширину, как выглядит большой предмет и как — маленький. Или, читая книгу, показывайте на рисунке маленькие предметы и большие, объясняя, что они разные. То есть, учить сравнивать можно во время игр, прогулки или даже уборки в доме. Главное знать, как понятно объяснить это малышу.
Перед тем, как сравнивать предметы по цвету, ребёнок должен различать цвета. Абстрактное слово для малыша — пустой звук. Он должен представлять, как выглядит тот или иной цвет. Поэтому ему будет проще запомнить, что «это жёлтый, как солнышко», а это «синий, как туча», «чёрный, как ночь» и так далее. Можно рисовать один день только жёлтой краской, второй — красной и т. д., проговаривая название цвета. Или целую неделю делать акцент на определённом цвете: «Мы тебе надели красивые зелёные кроссовки. Берём зелёный карандаш и рисуем зелёную травку» и так далее. То есть, делаем всё, что поможет соотнести понятие с фактом. Методик очень много, главное, выбрать подходящую или изобрести свой подход.
2. Учим ребёнка обобщать
Умение обобщать пригодится в математике. Дети трёх-четырёх лет знают достаточно понятий, но обобщать их умеют немногие. Например, что такое круг, квадрат и треугольник? Лишь единицы ответят: «Фигуры». Поэтому в помощь родителю — «Моя первая книжка», «Учим формы» и другие. Рассказав ребёнку, что есть общего у многих вещей и понятий, можно приступать к играм. Например: «Свекла, морковь, капуста — как называется всё это одним словом?». Или: «Назови мне деревья, которые ты знаешь». Такие игры можно продолжать до бесконечности по разным группам предметов. Отработав навык обобщения, малыш сможет сам анализировать информацию и делать выводы.
3. Учим ребёнка анализу и синтезу
Ещё один важный математический навык, который развивают в раннем детстве. Анализируя, ребёнок может разделять предмет на его составляющие. Например, дерево — на корень, ствол, ветки, листья и плоды; домик — на фундамент, стены, окошко, крышу и трубу. Этот навык поможет подробнее изучить предмет по важным признакам и сделать его более узнаваемым для малыша.
Синтез — это противоположный анализу процесс. Суммируя отдельные признаки, дети также узнают предметы. Им становятся доступны такие игры, как «составить пазлы», «разгадать загадку», «угадать предмет по описанию» и так далее.
Хотите развивать у ребёнка математические способности? Запишите в музыкальную школу! Связь музыки с математикой была доказана Пифагором ещё в VI веке до н.э. Понимая ритм, такт и длительность нот, дети учатся делению, составлению дробей и распознаванию повторяющихся элементов
4. Учим ребёнка классифицировать понятия
После анализа и синтеза ребёнку становится понятной классификация предметов — то есть, отнесение предмета к группе по видо-родовым признакам. Например, знакомим ребёнка с домашними животными и дикими, делим фигуры на «с углами и без», учим находить лишнее в ряду и так далее.
5 . Развиваем ребёнка загадками, ребусами
Загадки и ребусы отлично развивают логику ребёнка, ведь во время их решения малыш одновременно совершает несколько мыслительных операций. Вот примеры некоторых головоломок для дошкольника:
-
Дима и Андрей рисовали. Один мальчик рисовал дом, другой — дерево. Что рисовал Дима, если Андрей не рисовал дом?
-
Два мальчика сажали деревья, а один — куст. Что сажал Антон, если Леонид с Антоном и Максим с Антоном сажали разные растения?
-
Люда на 5 см ниже Жени. Женя на 8 см выше, чем Лиза. Кто выше всех?
Конечно, такие задания не должны быть разовыми. Нужно регулярно подыскивать интересные упражнения, книги, постепенно усложняя уровень. Возможно, раннее знакомство с азами математики помогут вашему ребёнку в будущем самореализоваться и быть успешным.
Примеры занятий с ребенком для развития математических способностей
Для решения этой задачи не требуется каких-либо изысканных способов, нужно просто в вашу обычную жизнь внести некоторые дополнения.
- При прогулке на улице предложите ребенку посчитать какие-либо предметы или объекты (плитку, машины, деревья). Укажите на множество предметов, попросите найти обобщающий признак;
- Предлагайте ребенку решать задачи по поиску правильного ответа, ориентируя его. Например, у Маши 3 яблока, а у Кати 5, у Лены на одно яблоко больше, чем у Маши и на одно меньше, чем у Кати. Задачу можно и упростить, спросив, какое число находится между 1 и 3;
- Наглядно поясните ребенку, что такое сложение и вычитание. Сделайте это на яблоках, игрушках или любых других предметах. Дайте ребенку пощупать предметы и через добавление или вычитание предмета покажите эти простые операции;
- Спрашивайте ребенка о том, в чем отличие предметов;
- Покажите, что такое весы и как они действуют. Поясните, что вес можно не только почувствовать, взяв предмет в руки, но можно еще и измерить в цифрах;
- Научите пользоваться часами со стрелками;
- Уделите особое внимание пространственному расположению предметов;
- Формы можно изучать не только на карточках, но и искать их в предметах вокруг;
- Покажите вашему ребенку, что математика есть во всем, что окружает его, стоит только присмотреться.
Какие дополнительные материалы помогут обучить ребенка математике
- Карточки и картинки с разным количеством предметов, с цифрами и математическими знаками, геометрическими фигурами;
- Магнитная или меловая доска;
- Часы со стрелкой и весы;
- Палочки для счета;
- Конструкторы и головоломки;
- Шашки и шахматы;
- Лото и домино;
- Настольные игры;
- Книги, в которых есть счет, и позволяющие проводить математические операции;
- Методические пособия на развитие логики и других способностей по возрасту ребенка.
Принципы организации игровой деятельности для дошкольников
- Игра для дошкольника должна базироваться на общепринятых нормах морали и нравственности, уважительного отношения к личности ребенка.
- Игровые действия ни в коем случае не должны каким-либо образом унижать достоинство участников (в том числе проигравших).
- Дидактическая игра должна помочь ребенку максимально глубоко постичь окружающий мир, усваивая закономерности, которым он подчиняется.
В частности, целью дидактических игр может быть развитие математических способностей у детей дошкольного возраста. Через игровую деятельность сделать это будет значительно проще.
Как использовать дидактические игры для обучения ребенка основам счету
Современная педагогика развивается стремительными темпами. И все больше школ начинает использовать в процессе обучения развивающие технологии с применением компьютерной техники, набирать экспериментальные классы. И то же самое можно смело сказать и о семейном воспитании.
Дидактические игры помогают развивать математические способности
Раннее приобщение ребенка к высоким технологиям неслучайно: компьютерная и информационная грамотность является требованием современного ритма жизни. Именно поэтому уже в дошкольном периоде необходимо уделить максимум внимания формированию математических представлений и основам информатики. Все эти навыки обязательно пригодятся ребенку в школе.
Что должен знать ребенок к моменту поступления в первый класс?
Несмотря на то, что математика является одним из базовых школьных предметов, а также основой многих наук, которые ребенок начнет изучать в будущем, именно эта дисциплина во многих случаях вызывает у детей немалые трудности. Во многом это связано с тем, что математический склад ума, значительно облегчающий восприятие ребенком информации такого типа, присущ далеко не всем детям.
Тем не менее, существует строго определенная система знаний и математических представлений, которые должны быть сформированы уже к моменту поступления ребенка в школу.
- Способность считать от нуля до десяти как в прямом, так и в убывающем порядке
- Развитый навык узнавания чисел в ряду (даже если они помещены вразбивку)
- Сформированные представления о количественных и порядковых числительных
- Сформированные представления о «предыдущем» и «последующем» числе в пределах десятка
- Знание основных геометрических фигур и навык их узнавания (понимание признаков, отличающих треугольник, круг, квадрат и т.д.)
- Наличие представление о целом и о долях; способность разделить предмет на 2 и 4 равные части.
- Способность использовать палочки, веревки и некоторые другие измерительные приспособления для оценки таких параметров фигуры, как длина, ширина и высота
- Способность сопоставлять предметы по категориям «больше-меньше», «выше-ниже», «шире – уже».
Математические игры и упражнения для детей
Изучение чисел, основ счета
- «Изобрази цифру». Для наглядности детям предлагается изобразить изучаемую цифру из подручного материала. Ее можно слепить из пластилина, выложить из веревочки, из палочек. В процессе ручного творчества происходит быстрое и уверенное запоминание.
- «Ищем цифру». Педагог показывает цифру на карточке и просит ребенка сказать, на что она похожа. Например, цифру 6 легко сравнить со вернувшейся змеей, замком, 0 — это бублик. Пусть дети включат фантазию!
- «Водитель». Эта игра хорошо подходит для закрепления изученных цифр. Ребенок перевозит на машине пассажиров. Расставьте в ряд игрушки, перед каждой положите карточки с порядковым номером. По заданию взрослого, «водитель» должен найти своих пассажиров. Например, в первую поездку поедут пассажиры под номерами 3, 5 и 8. Можно играть и на бумаге — нарисованные герои должны попасть каждый в свой дом (цифра на домике и игрушке должны совпадать или быть заранее указаны педагогом).
- «Теремок». На основе знакомой сказки легко повторять счет. В домик по одному приходят игрушки. Ребенок должен сказать, сколько стало жителей в теремке. На этой же игре можно отрабатывать названия порядковых числительных — зайка первый гость, лисичка — второй и т. д.
- «Счет на слух». Ребенок должен показать карточку с числом, указывающим сколько раз педагог хлопнул в ладоши.
Игры на изучение формы предмета
- Запомнить названия геометрических форм помогут игры с палочками. Попросите ребенка выложить из них треугольник, квадрат, прямоугольник — сначала по образцу, а затем самостоятельно. Помимо того, такие задания развивают логическое мышление и стимулируют моторику.
- Геометрическое лото — увлекательная игра для компании. В процессе дети учатся сравнивать фигуры, находить предметы по образцу. К карточке с изображенной на ней геометрической фигурой надо найти пару, на которой нарисован предмет похожей формы. Важное условие — необходимо сказать ее название.
- Игра «Найди фигуру». На изображении ребенок должен найти знакомые геометрические фигуры и обвести их разным цветом.
Игры на формирования понятий «больше-меньше», «равное количество»
- «Чаепитие» — один из самых наглядных вариантов. Посадите за стол несколько игрушек, расставьте сбоку посуду. Хватит ли всем гостям чайных приборов? Расставляя перед каждой игрушкой чашки, ребенок может убедиться самостоятельно, больше или меньше посуды, чем гостей. Обязательно повторение слов, обозначающих эти понятия.
- Для старших дошкольников предлагаются более «серьезные» задания — посчитать количество углов у геометрических фигур, сравнить их, определить, насколько больше или меньше заданных на картинке предметов.
Игры для развития пространственной ориентации
- «Найди игрушку». Ребенок должен найти игрушку, местоположение которой задает педагог (слева от мишки, справа от стола, под тетрадкой).
- «Карта пиратов». На листе бумаги, изображающем остров, дети должны обозначить место пиратского клада. У каждого — свое задание (левый верхний угол, центр карты и т. д.).
- «Геометрический диктант». Дети рисуют в тетради по клеточкам под диктовку взрослого (от заданной точки одна клеточка вверх, одна вправо, одна вниз и одна влево).
- «Повтори орнамент». По образцу необходимо нарисовать в тетради по клеткам заданный узор.
Для развития логического мышления, навыков сравнения и сопоставления используются задания, построенные по принципу «Найди лишний предмет», «Продолжи цепочку». Не стоит забывать и игры на стимулирование внимания и памяти.
Учитывая особенности возраста, упражнения и задания должны чередоваться с активными играми. Даже играть в мяч можно с пользой для изучения математики. Например, развивать устный прямой и обратный счет намного интереснее в веселой игре.
Позитивный настрой, созданный игровой ситуацией, стимулирует детей к активному участию, поиску решений и стремлению к познанию. В результате математические представления и навыки формируются и закрепляются без утомления и в процессе самостоятельной работы.
ы.
Игры на усвоение основ информатики
Несмотря на то, что информатика все еще не является предметом, обязательным для изучения в младшем школьном возрасте, изучение ее основ в значительной степени способствует развитию форм абстрактного мышления. А также помогает усвоить такие действия как классификация предметов по определенным признакам, ранжирование, выделение основного и второстепенного. Ребенок начинает учиться усваивать установленные правила и строго им придерживаться.
Для овладения элементарными представлениями об информатике можно использовать настольные игры, которые сегодня продаются во всех детских магазинах.
Смысл большинства настольных игр для детей достаточно прост: при помощи фишек и кубика ребенок осуществляет перемещения по игровому полю. Благодаря этому происходит формирование пространственно-временных отношений, способность следовать заданным инструкциям, осуществлять последовательные действия. Ребенок усваивает простейшие условия и алгоритмы. Желательно, чтобы настольные игры были дополнены интересным для ребенка сюжетом, продуманным дизайном и интересной графикой.
Вместо транспортира
Ладошка отчасти сможет заменить транспортир. Например, запомнить значения углов: представьте, что каждый палец обозначает угол от 0 до 90 градусов. Большой палец — 90 градусов, указательный — 60, средний — 45, безымянный — 30, мизинец — 0. Конечно, точностью такие расчеты не отличаются, но приблизительно величину углов прикинуть можно.
Умножаем с помощью ладошек
Обычно дети неплохо справляются с умножением маленьких чисел. А вот все, что больше 6х7, вызывает вопросы. Сколько будет 7х8? А 6х9? Если ребенок еще не выучил толком таблицу умножения, помогут собственные ладошки.
Представим, что две ладони — это два числа, которые надо умножить друг на друга. Запоминаем правила: один загнутый палец — это число 6, два загнутых пальца — число 7, три загнутых пальца — это 8, а четыре загнутых пальца — это 9. То есть если надо умножить семь на восемь, то на одной ладони загибаем два пальца , а на другой — три.
Теперь считаем, сколько всего пальцев согнуто, это будут десятки в ответе. В нашем примере загнуто 5 пальцев, это будет 50. Затем умножаем число незагнутых пальцев на одной ладони и на другой — это будут единицы. В нашем примере надо умножить 2 на 3, это будет шесть. Совмещаем десятки и единицы — получается 56.
Правило бабочки
Говоря научным языком, это визуализация алгоритма, которая поможет научить ребенка складывать и вычитать простые дроби в математике. Рисуем «крылья» бабочки — объединяем числители и знаменатели дробей. Умножаем их крест-накрест и пишем получившиеся значения в «усиках» бабочки. Теперь складываем или вычитаем их — в зависимости от того, что нужно сделать в задании. Получившийся результат — это и есть итоговый числитель.
Теперь нужно разобраться с нижней частью дроби. Для этого рисуем «хвостик» бабочки — умножаем нижние части дробей друг на друга. Это и будет знаменатель.
Умножение на 9
Умножать на 9 при помощи пальцев проще всего. Для этого надо мысленно (ну или фломастером) пронумеровать пальцы на обеих руках от 1 до 10. Затем загибаем палец под тем числом, на которое надо умножить 9. То есть если в примере 9х3, загибаем третий (средний) палец левой руки. Затем смотрим, сколько пальцев осталось прямыми до загнутого (это будут десятки) и после него (это будут единицы). В нашем примере будет 2 пальца до загнутого безымянного и 7 после — то есть 27 .
Методики раннего обучения детей счету
Обучение счету по Лупан
Счет по Лупан лежит в основе всех вычислений, поэтому ему нужно обучать в первую очередь. Чтобы считать, нужно понимать суть самого процесса счета. Считайте все. Повторяйте цифры вслух, громко и четко, прежде чем что-либо сделать — потушить свет, включить телевизор, открыть дверь. Видя, как считаете вы, малыш захочет последовать вашему примеру. Как только он проявит такое желание, поощряйте его попытки. Объясните, что такое ноль: при переходе к символам ноль понадобится для записи цифры после 9. Чтобы дать почувствовать малышу, что число, ничего не обозначающее — совершенно особое число, задавайте ему шуточные вопросы: «Сколько коров у тебя в кармане? Сколько крокодилов у нас в ванной?». Переходите к другим видам счета.
Контактный счет: попросите пересчитать пальцы на руке, дотрагиваясь до них другой рукой, затем предметы перед ним.
Обратный счет: ребенок не научится вычитать, если не умеет «считать назад».
Счет до заранее заданного числа. Положите перед малышом горсть фасолин, попросите отсчитать 3 из них. Когда поймет это, попросите сделать несколько кучек, по 3, 5, 9 штук в каждой. Если справится и с этой задачей, расположите перед ним предметы в ряд, попросите отсчитать (дотрагиваясь до них, но не передвигая) меньшее число предметов, чем лежит перед ним. Регулярно просите малыша считать до определенной указанной вами цифры, не дотрагиваясь до предметов и не упоминая их.
Поочередный счет: вы говорите 1, он говорит 2, вы говорите 3, он говорит 4 и т. д. Вначале он захочет называть ваши числа; объясните ему, что это запрещено правилами игры. В следующий раз начинать должен он: он говорит 1, вы говорите 2 и т. д. Когда ребенок будет легко справляться с подобным заданием, привлеките к игре кого-нибудь еще (скажем, другого ребенка, ему это тоже понравится!) и поиграйте втроем, потом вчетвером и т. д.
Четные и нечетные числа. Если разделить горох поровну — это четное число, останется «излишек» — нечетное. Когда малыш поймет разницу между четным и нечетным числом, поиграйте в поочередный счет, при этом один называет нечетные числа, а второй — четные. Крайне важно, чтобы счет вошел в привычку. Приведенные варианты нужны, чтобы, с одной стороны, избежать монотонности, а с другой — научить считать разными способами. В результате малыш начнет считать все, что его окружает. Поощряйте такое стремление: ежедневные упражнения в счете готовят его ум к вычислениям.
«Стосчет» Николая Зайцева
Методика Зайцева отличается системным подходом. Это комбинация таблиц, наглядно показывающая «значение» числа. Обучение состоит в том, что ребенку предлагают увидеть сразу все числа от 0 до 99, то есть всю сотню сразу. Причем все это представлено в виде стройной системы, демонстрирующей не просто количество, но и состав числа. Ребенок сразу видит, сколько десятков и единиц составляет каждое число.
Расчерчивается лист так, чтобы получилось десять крупных квадратов в два ряда по пять. Не раскрашивая квадраты, повесить лист на стену, а над ним поместить цифру ноль. Обратить внимание ребенка на то, что все квадраты белые — ни один из них не закрашен.
На другой день на абсолютно таком же листе, расчерченном на десять квадратиков, закрасить один из квадратов любимым цветом. Над ним на стене пишется единичка.
И вот так день за днем вешается по одному листочку, на десятый день на стене помещается заполненный, раскрашенный десяток, в котором каждый кирпичик будет четко очерчен, а рядом с ним вешается такой же, но пустой десяток. Должен получиться один десяток и ноль единиц — цифра один располагается точно над десятком, а ноль над единицами. На одиннадцатый день начинает заполняться второй десяток и можно раскрашивать его таким же или другим цветом.
Причем полные десятки каждый раз помещаются один под другим, а неполные или пустые справа от полных. Таким образом надо дойти до девяноста девяти.
На стене, вдоль детской, выстраивается длинная цепочка чисел, над каждым листком висит соответствующая цифра. Ребенок начинает предметно ощущать количество. Он начинает понимать, что десять состоит из двух полосочек по пять, а одиннадцать — это десять и еще один кирпичик. Можно играть в ящички с кирпичиками, например, для трехлетнего малыша не составит труда сказать, что сорок восемь — это четыре целых ящичка и еще восемь кирпичиков.
Затем вводятся элементы арифметических действий с первого же дня знакомства с лентой. Ребенок два-три раза в день пробегает указкой взад и вперед всю нарисованную взрослым ленту, запоминая порядок чисел. Потом задаются вопросы типа: к любому числу, например, к пятнадцати прибавить два (семь, двадцать два — т. е. любое число) и вместе с ребенком указкой по ленте взрослый шагает вперед (туда, где больше) на заданное количество «шагов», например, на два.
Точно так же можно работать с вычитанием, выполнять примеры в несколько действий, проходя указкой туда-сюда по ленте.
Очень быстро ребенок сможет решать любые сложные примеры в пределах ста. Дальнейшая ваша задача состоит в том, чтобы придумывать ему интересные сложные задачи. А он с легкостью будет их щелкать вместе со «Стосчетом».
В продаже бывает готовый «Стосчет». Дроби и степени показаны в виде частей кружочков, а цифры — количеством точек. Будьте готовы и к тому, что сам материал является «полуфабрикатом»: картонные вырезки предстоит склеивать, «укреплять» изолентой, самостоятельно находить «наполнение» в виде железных крышечек из-под бутылок, деревянных палочек. Но полученный результат оправдает затраченные усилия.
Способ карточек по Доману
Малыш должен сначала понять, что такое количество, и лишь когда он реально будет представлять себе, что такое девять яблок или шесть собак, его можно знакомить с цифрами. Важно в первую очередь научить ребенка видеть количество.
Под словом «цифра» подразумеваются символы, которые обозначают количество. Говоря слово «число», имеем в виду действительное количество самих объектов, которых может быть два, пять или девять:
Каждую карточку рекомендуется показывать вне зависимости от того, что на ней изображено, по 1—2 секунды. Таким образом, весь урок занимает 10—30 секунд, повторяется несколько раз в день. Такое обучение приносит ребенку одно удовольствие.
Материал, используемый для обучения ребенка счету, предельно прост. Необходимо сделать карточки из ватмана размером примерно 25×25 см. Необходимо, как минимум, 100 таких карточек.
Нанесите на каждую карточку от одной до ста точек. Красный цвет ярко выделяется на белом фоне и поэтому красные точки больше всего привлекают внимание ребенка. Начните с карточки, на которую надо нанести 100 точек и идите по убывающей. Самое большое количество точек требует наибольшего внимания, а потом вам будет все легче и легче.
С обратной стороны карточки запишите карандашом или ручкой цифру — нужное количество точек, которое вы собираетесь на нее поставить.
Размешайте точки хаотично, а не в форме квадрата, ромба или какой-нибудь другой фигуры. Начните их ставить с середины, следя за тем, чтобы они не налезали одна на другую.
По краям карточки не забудьте оставить небольшие поля. Именно за них вы и будете держаться пальцами, когда начнете процесс обучения.
Первый этап. Освоение понятия «количество»
На первом этапе необходимо научить ребенка воспринимать реально существующее количество, которое на письме принято обозначать с помощью цифр. Для первого урока возьмите карточки с 1 до 5. Занятие должно проводиться со здоровым и бодрым ребенком.
Показывая ребенку карточку с единственной точкой, внятно произносите вслух: «Это один». Показывать карточки нужно быстро, ровно столько, сколько вы будете их называть. И без пояснений.
Затем показываются следующие карточки: вторая, третья, четвертая и пятая. При этом к вам карточки должны быть обращены обратной стороной.
Доставать карточку лучше всего из-за спины, лицевой стороной к ребенку, обратной стороной к себе, видя цифру, написанную на этой стороне. Произнося цифру, смотрите на ребенка и улыбайтесь ему.
Показав пять карточек, обязательно похвалите ребенка.
В течение первого дня повторите свой урок еще два раза, точно таким же образом. В течение первых недель занятий перерывы между ними должны быть не менее получаса. Позже вы сможете уменьшить промежутки между занятиями до 15 минут.
Общая продолжительность занятий первого дня составит не больше трех минут. В течение второго дня повторите основные упражнения 3 раза. Добавьте второй набор из пяти карточек с количеством точек от 6 до 10 и. тоже продемонстрируйте его три раза. Таким образом, общая продолжительность занятий увеличится до шести минут.
Первый раз, когда вы учите ребенка с помощью двух этих наборов, демонстрируйте их по порядку (т. е. 1, 2, 3,4, 5).
После этого начинайте тасовать каждый набор, чтобы перед очередным показом карточки лежали совершенно случайным образом.
По окончании занятий обязательно хвалите ребенка, но только не надо при этом давать сладкое.
Малыш усваивает материал очень быстро, поэтому показ карточек свыше 3 раз в день может ему просто наскучить.
Итак, вы учите ребенка с помощью двух наборов карточек по 5 штук в каждом, и демонстрируете каждый набор по 3 раза в день. Всего у вас выходит шесть уроков, общей продолжительностью в несколько минут, но растянутых на весь день.
И помните самое главное: никогда не давайте ребенку скучать. Слишком медленные занятия наскучат ему гораздо вернее, чем слишком быстрые.
Продолжайте демонстрировать два набора из 5 карточек, но уже на второй день занятий перемешайте их между собой так, чтобы в одном наборе находились карточки, например 3, 10, 8, 2 и 5, а в другом — все остальные. Постоянное перемешивание карточек позволит каждое занятие иметь что-то новое и непредвиденное, поскольку ваш ребенок никогда не будет знать заранее, в каком порядке вы станете показывать ему карточки. Это очень важно для того, чтобы сохранить необходимую для занятий новизну.
Продолжайте занятия с двумя первыми наборами в течение пяти дней. На шестой нужно начать убирать старые карточки и добавлять новые. Делайте это так: изымайте два самых маленьких числа (т. е. начните с 1 и 2) и добавляйте следующие по порядковому номеру (т. е. 11 и 12). Таким образом обновляйте свои наборы ежедневно на две карточки.
Изученные карточки пригодятся вам для второго и третьего этапа.
В общем, пользуйтесь 10 карточками ежедневно, разделив их на два набора, каждый день обновляя два числа.
Чувствуете, что у ребенка все идет как надо, обновляйте по три, а то и по четыре карточки. К этому моменту данная игра должна доставлять вам взаимное удовольствие. Помните, что для ребенка ваше обучение — игра, потому играйте в эту игру с любовью и энтузиазмом.
На данном этапе ребенок уже способен с первого взгляда постичь, что количество точек, монет или овец одинаково и равно, скажем, 47.
Продолжайте учить своего ребенка с помощью карточек, пока не пройдете последнюю, сотую. Когда ваш ребенок увидел все карточки от 1 до 100, он прекрасно усвоил идею количества. Поэтому можете перехоти, ко второму этапу.
Второй этап. Уравнения
Изучив карточки от 1 до 20, переходите к новым числам, а не повторяйте старые. Проверять первые успехи своего ребенка не стоит. Любая проверка внесет долю напряженности, и ребенок без труда это почувствует. В результате неприятное напряжение ассоциируется у него с учебой. Занятия математикой должны стать источником радости и веселья для вас обоих.
Освоив числа от 1 до 20, вы оба будете готовы к тому, чтобы освоить операцию «сложение».
Это довольно легкая операция, да и ребенок уже несколько недель готов к этому. Ведь каждый раз, когда вы показываете ему новую карточку, он видит, что на ней появилась одна дополнительная точка. Это становится предсказуемым. Однако он еще не может предсказать название следующего числа — например, 21. Но карточку, содержащую 20 точек, он знает, и добавляется одна лишняя точка. Это и называется сложением. Лучше всего будет, если ребенок придет к этой идее самостоятельно, еще до того, как вы первый раз продемонстрируете ему операцию «сложение».
Материал для этого вы можете приготовить очень просто: пишите уравнения на оборотных сторонах карточек от 1 до 20. Например, оборотная сторона карточки с десятью точками может выглядеть так:
9 + 1 = 10
8 + 2 = 10
7 + 3 = 10
6 + 4 = 10
5 + 5 = 10
2 х 5 = 10
5 х 2 = 10
1 + 2 + 3 + 4 = 10
20:2=10
30:3=10
40:4=10
50:5=10
19-9=10
18-8=10
17-7=10
16-6=10
Перед началом положите себе на колени лицевой стороной вниз, одна на другую, три карточки. Произнесите весело и с энтузиазмом: «Один плюс два равняется трем». Пока вы будете это говорить, продемонстрируйте ему карточку с числом, о котором идет речь.
Таким образом, вы держите в руках карточку с одной точкой, говорите «один», затем откладываете ее, говорите «плюс», показываете карточку с двумя точками, произносите «два», откладываете ее и, после слова «равняется», показываете карточку с тремя точками, произнося «трем».
Делайте это быстро и естественно. Самое главное — заранее приготовить все карточки, необходимые для того или иного уравнения. Ребенок не будет спокойно сидеть и ждать, пока вы будете искать нужные карточки.
Подготовить набор карточек нужно накануне дня занятий, чтобы к тому моменту, когда вы выберете подходящее для занятий время, они уже были у вас под рукой. И не стоит задерживаться на слишком простых уравнениях с числами от 1 до 20, переходите к более сложным.
Показ каждого уравнения должен занимать буквально несколько секунд. Не объясняйте, что означают слова «плюс» или «равняется». В этом нет необходимости, поскольку, производя действия, вы тем самым быстрее всяких объяснений демонстрируете подлинный смысл этих слов. То есть ваш ребенок увидит сам процесс раньше, чем услышит от вас объяснение. Да оно ему и не нужно — все объяснила наглядность ваших действий. Такой способ обучения является наилучшим.
Дети видят не символы, а факты. Рассказывая об уравнениях, всегда придерживайтесь одной и той же манеры изложения, употребляя одни и те же термины. Раз сказав «Один плюс два равняется трем», не говори
те потом «К одному прибавить два будет три». Когда вы учите ребенка фактам, он сам делает выводы и постигает правила, так что мы, взрослые, не должны мешать ему в этом. Если вы меняете термины, то ребенок имеет все основания думать, что и правила тоже изменились.
На каждом занятии должно быть не более трех уравнений. Каждое из трех ежедневных занятий должно содержать три различных уравнения, таким образом, общее количество ежедневных уравнений будет равно девяти. Повторять одни и те же уравнения не следует, каждый день они должны быть новыми. Сначала уравнения пусть будут из двух членов — тогда ваши занятия пойдут быстрее и веселее.
Желательно избегать таких уравнений, которые бы имели нечто общее, например:
1 + 2 | = 3 |
1 + 3 | = 4 |
1 + 5 | = 6 |
и т. д. Ребенок может просто предугадать ответ. Гораздо лучше использовать такие уравнения:
1 + 2 | = 3 |
2 + 5 | = 7 |
4 + 8 | = 12 |
Используя карточки от 1 до 20, можно составить 190 различных уравнений, так что на первую неделю занятий материала у вас будет в изобилии.
Через две недели занятий с девятью уравнениями настанет время вычитания. Учить вычитанию надо точно так же. Вы показываете карточки, называете числа, действие и результат.
Поскольку теперь вы уже перевалили за число 20, количество возможных вариантов возрастет и будет продолжать расти.
Три ежедневных занятия с тремя различными уравнениями в каждом занятии, и при этом вы одновременно продолжаете учить числа с помощью двух наборов по пяти карточек в каждом, тоже 3 раза в день. Итого, у вас будет девять ежедневных и очень коротких занятий.
Каждое из уравнений имеет большую ценность для ребенка, поскольку он уже заранее знает и число и его название — десять.
Следующие две недели посвящаются вычитанию, разберете со своим ребенком примерно 126 примеров. Этого вполне достаточно, и теперь самое время переходить к умножению.
Умножение это не что иное, как многократное сложение, так что оно не станет большим открытием для вашего ребенка. Поскольку ваш ежедневный набор из карточек с точками постоянно возрастает, у вас уже есть достаточно возможностей для уравнений на умножение. Заранее подготовьте все возможные примеры, написав их на обороте карточек.
Воспользуйтесь тремя из них и скажите: «Два умножить на три равно шести».
Ребенок поймет слово «умножить» так же быстро, как он понял до этого слова «плюс», «равняется», «минус» и т. д.
Обязательно продолжайте обучать ребенка числам. В идеальном случае ваш ребенок будет видеть только реальное количество, число в виде точек на карточках, и не будет представлять себе цифр, даже таких простых как 1 или 2.
Умножением тоже нужно заниматься две недели. Продолжайте избегать предсказуемых уравнений, например, таких, как:
2×3 | = 6 |
2×4 | = 8 |
2 х 5 | = 10 |
Таким образом, через два неполных месяца ваш малыш ознакомится с числами от 1 до 100, узнает сложение, вычитание, умножение.
Далее надо заняться нулем. Дети просто обожают ноль, а потому заранее нужно приготовить одну карточку, на которой вообще не будет никаких точек. Эту карточку вы будете использовать практически каждый день. Она пригодится вам для операций сложения, вычитания и умножения. Например:
После двух недель занятий умножением настало время переходить к делению. Теперь, когда вы уже прошли все числа от 0 до 100, у вас есть весь необходимый материал для примеров на деление. Напишите соответствующие уравнения на задней стороне практически всех карточек.
Вы просто говорите ребенку: «Шесть разделить на два равняется трем».
И он прекрасно поймет значение слова «разделить». Как и прежде, каждое занятие будет состоять из трех различных уравнений, а каждый день — из трех занятий. С ежедневными девятью уравнениями ваш ребенок справится без всякого труда.
Посвятив две недели делению, вы закончите второй этап и будете готовы перейти к третьему.
Третий этап. Решение задач
Вам, конечно, хочется понять, как ваш малыш усвоил материал, который вы ему давали, но проверке или тестированию не надо подвергать ребенка. Надо воспользоваться методом выявления способностей.
Цель этого метода — предоставить ребенку возможность продемонстрировать свои знания, но лишь в том случае, если он сам этого захочет.
То есть задача этого метода прямо противоположна тестированию. Теперь вы уже понимаете, что надо не проверять ребенка, а учить его тому, как решать задачи.
Вот простой пример. Вы показываете ему две карточки с 15 и 32 точками и спрашиваете: «Где тридцать два?»
Правильно указал карточку, — погладить и поцеловать. Если же он ошибся, то покажите правильную карточку: «А разве тридцать два — не это?»
Не отвечает на ваш вопрос, — приблизить к нему нужную карточку и спросить: «Вот тридцать два, не так ли?»
Занятия ведите весело, спокойно и с энтузиазмом.
Метод выявления способностей можно применять в конце занятия. Таким образом, будет существовать баланс между тем, что вы даете, и тем, что вы получаете.
В процессе занятий вы знакомите его с тремя примерами, в конце предоставляете возможность решить еще один пример, но только в том случае, если он сам этого захочет.
Для данного метода вам потребуются те же три карточки, которые вы использовали для демонстрации уравнения, и четвертая карточка как возможный вариант ответа.
Не просите своего ребенка сказать ответ, а всегда предоставляйте ему возможность выбора между двумя вариантами.
Ведь маленькие дети еще только начинают учиться говорить, поэтому им трудно будет отвечать устно. Но даже те дети, которые уже начали разговаривать, не любят отвечать устно, тем более, что это само по себе является для них испытанием.
После того как прошли все числа и познакомились с четырьмя правилами арифметики, можете разнообразить и усложнять свои занятия разными способами.
Занимайтесь так же — по три занятия ежедневно с тремя различными уравнениями в каждом занятии. Но теперь нет необходимости показывать все три карточки Уравнения, показывайте только карточку с ответом. Ваши занятия станут короче. Вы просто говорите ребенку: «Двадцать два разделить на одиннадцать равно двум», — и показываете ему карточку «два».
Ваш ребенок уже знает, что такое 22 и что такое 11, поэтому не нужно показывать ему этих карточек. Впрочем, необязательно даже показывать карточку с ответом «два», но взрослые любят снабжать пояснения иллюстрациями, детям это тоже нравится.
Далее занятия будут состоять из различных видов уравнений, например, из уравнений на деление, сложение и вычитание. Пора переходить к уравнениям с тремя членами. Но не задерживайтесь и не снижайте темпа, помните, что скорость подачи материала очень важна для вашего ребенка.
Напишите по одному-два трехчленных уравнения на оборотной стороне каждой карточки. Вот как это должно выглядеть:
Уравнения
2 х 2 х 3 = 12 |
2 х 2 х 6 = 24 |
2 х 2 х 8 = 32 |
Решение задач
2 х 2 х 12 =???
48 или 52
Занятия по-прежнему должны быть короткими. Ежедневно ребенок знакомится с девятью трехчленными уравнениями и в конце каждого занятия пытается решить одну задачу, выбрав правильный ответ.
Через несколько недель занятий такими уравнениями необходимо произвести их замену. Познакомьте ребенка с другими уравнениями, которые понравятся ему больше всех остальных.
Придумайте уравнения, которые состоят из комбинации четырех арифметических правил. В каждом таком уравнении должны быть две разные операции. Вот теперь вам стоит воспользоваться уравнениями, которые бы имели между собой нечто общее.
Например:
3 х 15 + 5 = 50 |
3 х 15 – 5 = 40 |
3 х 15 : 5 = 9 |
Или
40 + 15 – 30 = 25 |
40 + 15 – 20 = 35 |
40 + 15 – 10 = 45 |
Или
100 – 50 : 10 = 95 |
50 – 30 : 10 = 47 |
20 – 10 : 10 = 19 |
Придумывая такие уравнения, важно помнить о том, что при использовании умножения именно это действие надо выполнять первым. Как и все предыдущие, напишите их на оборотной стороне карточек.
Метод выявления способностей пригодится и в этом случае.
Через три-четыре недели добавьте еще одну операцию, перейдя к уравнениям с четырьмя членами. Например:
56 + 20 – 16 : 2 = 68 |
56 + 20 – 8 х 2 = 60 |
56 + 20 – 4 х 2=68 |
Чем сложнее уравнения, тем больше удовольствия они будут доставлять вам и вашему ребенку. Можете демонстрировать и три других уравнения, которые не имеют между собой ничего общего. Например:
86 + 14 – 25 : 5 = 95 |
100 : 25 + 0 — 3=1 |
3 х 27 : 9 + 11 — 15=5 |
Ребенок обычно видит реальные операции с реальными количествами, а не просто манипуляции с символами, то что видят взрослые.
Четвертый этап. Освоение понятия «цифра», запоминание цифр
Вам потребуется изготовить новые карточки, на которых будут написаны цифры. Они будут иметь прежний размер и охватывать цифры от 0 до 100.
Писать следует толстым красным фломастером, размер цифр — 15 см в высоту и 7,5 см в ширину. При написании придерживайтесь одного и того же образца.
Учить цифрам вы будете точно так же, как до этого учили карточкам с точками.
Всегда помечайте карточки на оборотной стороне, в левом верхнем углу, чтобы быть уверенным в том, что при показе держите их правильно, а не вверх ногами. В итоге, ваши карточки должны выглядеть следующим образом:
1 | 2 | 3 | 100 |
Программа будет состоять из трех занятий уравнениями с решением задач в конце каждого занятия, и еще три занятия вы используете для обучения цифрам. Итого шесть занятий.
Вам потребуется 2 набора карточек с цифрами, по 5 цифр в каждом наборе. Как и раньше, начните с набора от 1 до 5 и с 6 до 10. Первый раз покажите их в порядке возрастания, но потом всегда перемешивайте так, чтобы порядок показа был непредсказуем. Ежедневно удаляйте две наименьшие цифры, заменяя их двумя наибольшими. Пусть в каждом наборе будет по одной новой карточке, а не так, чтобы в одном наборе две новых, а во втором — ни одной.
Показывайте каждый набор по три раза в день. Делайте это как можно быстрее. Если заметите, что ребенок начал скучать, ускорьте процесс обновления карточек — вместо двух заменяйте ежедневно по 3—4. Если считаете, что три раза в день — это слишком часто, то сократите количество занятий до двух.
На изучение всех цифр от 0 до 100 вам потребуется месяц, а то и меньше. После этого вы можете перейти к демонстрации более крупных цифр — 200, 300, 400, 500 и 1000. После этого выборочно ознакомьте ребенка с такими цифрами, как, например, 210, 325, 450, 586, 1830. Разумеется, что вы не должны показывать каждую цифру по порядку от 0 до 200 или 500 — это скучно для ребенка. Просто немного разнообразьте его занятие.
Еще когда только пройдете цифры от 1 до 20, необходимо «наведение мостов» между цифрами и количеством — точками. Для этого есть множество способов. Одним из самых простых является следующий. Воспользуйтесь равенствами, неравенствами, отношениями «больше» и «меньше», карточками с цифрами и точками.
Возьмите карточку с 10 точками, положите ее на пол, затем положите рядом с ней знак неравенства, а затем карточку с цифрой 35. После этого скажите: «10 не равно 35».
Урок может выглядеть следующим образом:
Изучение цифр — это очень простой этап для вашего ребенка. Постарайтесь пройти его быстро и весело, чтобы поскорее приступить к пятому этапу.
Пятый этап. Цифровые уравнения
Этот этап является повторением того, что вы делали прежде. Он включает в себя все арифметические операции и математические отношения, с которыми вы уже познакомились.
Сделайте карточки из белого картона размером 45 см в длину и 10 см в ширину. На них напишите цифровые уравнения. Но писать следует не красным, а черным фломастером и более мелким шрифтом — цифры должны иметь 5 см в высоту и 2,5 см в ширину.
Карточка будет выглядеть примерно так:
25 + 5 = 30 |
Теперь вернитесь ко второму этапу, на этот раз карточки у нас будут не с точками, а с уравнениями. Завершив второй этап, переходите к третьему.
Нужно сделать карточки, на которых бы не содержалось готового ответа. И снова воспользуйтесь карточками с цифрами, чтобы ваш ребенок мог выбирать из них правильный ответ. Вам будет полезно написать его в левом верхнем углу с оборотной стороны карточки с задачей, чтобы вы сами всегда о нем помнили:
25 + 5 (лицевая сторона)
25 + 5 = 30 (оборотная сторона)
Ниже приводится несколько примеров ваших учебных карточек с теми операциями, которые вы уже проделывали над точками.
Уравнения на вычитание
30 – 12 = 18 |
92 – 2 – 10 = 80 |
100 – 23 — 70 не равно 0 |
Уравнения на умножение
3 х 5 = 15 |
14 х 2 х 3 = 84 |
15 х 3 х 2 х 5 не равно 45 |
Уравнения на деление
76 : 38 = 2 |
192 : 6 : 8 = 4 |
84 : 28 = 3 |
Цифры высотой в 5 см используйте достаточно долго, чтобы убедиться, что ваш ребенок хорошо с ними освоился. И лишь постепенно делайте их все более мелкими. Сразу уменьшать величину цифр не надо, внимание ребенок обращает только на крупные цифры.
Постепенно вы сведете высоту цифр до 2 см, а то и меньше. Тем самым на вашей карточке появится больше места для более длинных и сложных уравнений.
Выводы
По окончании пятого этапа арифметика для вашего ребенка должна стать любимым предметом, ведь вы заложили фундамент для дальнейшего математического познания. Но это произойдет только в том случае, если все было сделано правильно.
Во-первых, ребенок освоился с количеством, т.е. способен отличить одно количество от другого.
Во-вторых, он умеет складывать эти количества, вычитать, умножать и делить.
В-третьих, он понял, что такое символы и что они используются для обозначения различных количеств.
Самое главное, что ребенок поймет разницу между реальным количеством и символами, один из которых нужно правильно выбрать для обозначения именно данного количества.
Роль ДОУ в процессе формирования элементарных математических представлений
Ещё в раннем детстве малыши сталкиваются с предметами, различающимися по форме, цвету и количеству. В этом возрасте начинают формироваться основные элементарные представления и способности ребенка.
Первые игрушки напоминают геометрические фигуры: кубики, конструкторы, пирамидки. Счёт начинается с вопросов мамы: «Скажи, сколько тебе годиков?». Родители детей учат называть формы игрушек их величину, количество.
Через игровую деятельность формируются способности различать разные свойства и особенности предметов. У малыша формируется первое понятие о математике, хотя он об этом пока ещё не знает и не осознает. Сознание ребёнка в раннем детстве хаотичное. Родители учат детей сопоставлять, группировать предметы, называть их своими именами.
Через наглядно-предметные действия они помогают ребёнку запоминать услышанное на основании предметных образов. До трёхлетнего возраста ребёнок уже умеет группировать предметы по их внешним признакам, цвету, форме. Так, например ребёнок может отложить зелёные игрушки от красных, выбрать карандаши из кучи других предметов и сложить их вместе, может сложить по размеру, по порядку колечки пирамидки.
Занимаясь с предметами через игровую деятельность ребёнок сравнивает их. С этого и начинается первое знакомство с математикой.
К четырём годам дети с лёгкостью считают до пяти, а чуть постарше до десяти, но они могут и ошибаться в счёте.
К шестилетнему возрасту, дети уже начинают понимать, когда цифры увеличиваются, а когда уменьшаются. Вот почему важно с детского сада нужно начинать систематические занятия, чтобы повысить умственное восприятие ребёнка.
В нынешнем современном обществе одним из требований к дошкольному воспитанию является получение детьми математических знаний и элементарных представлений в детском саду.
Дошкольники в ходе своего развития получают первые элементарные представления о математике. Имеющиеся методики и средства формирования элементарных математических представлений разработаны специально по возрастным категориям с учётом постепенного развития у дошкольников навыков и способностей в данном направлении.
Математика является самостоятельным образовательным предметом и рассчитана на развитие интеллектуальных способностей в зависимости от природного потенциала дошкольников. Ее роль в развитии элементарных представлений у дошкольников очень велика. В ходе такого рода занятий у ребёнка развиваются и формируются познавательные и личностные способности.
В процессе обучения, через средства математических занятий ребёнок получает первые представления о математических понятиях. Задачей математики служит – стремление воспитать из дошкольников, с перспективой на будущее, высококвалифицированные кадры.
Для достижения цели воспитания, в дошкольных учреждениях, при разработке целевых программ и методов воспитаний, должны учитываться отечественный и зарубежный передовой опыт, разрабатываться рекомендации для родителей. Полезным опытом воспитателей будет, если они будут обмениваться информацией и методами воспитания детей с другими детскими садами и дошкольными учреждениями.
Математика одна из немногих дисциплин, которая охватывает разные стороны личности детей. В процессе формирования элементарных математических представлений и обучения у дошкольников активно развиваются все познавательные процессы: речь, мышление, память, восприятие, представление. Это становится действенным, если при постановке занятий, учитывается периодичность и последовательность развития познавательных процессов у ребёнка, в зависимости от психофизического развития каждого ребёнка.
Если ребёнок не достиг того возраста, в котором он способен понять математические процессы, то занятия не будут играть ни какой роли для его сознания. Возможности ребёнка определяются его психологией. В современный мир всё чаще входят в программы обучения дошкольников инновационные методы и средства.
Некоторые из дошкольных учреждений уже применяют в своей образовательной деятельности уроки информатики для дошкольников. Весь мир сейчас связан с компьютерными технологиями и постепенно они проникают и в детские сады.
Математика, не обязательно скучные занятия, как может представиться на первый взгляд. Для обучения арифметики воспитатели играют с детьми, придумывают различные считалочки, пословицы, поговорки, загадки. Ребёнок осваивает первые числовые понятия и формы.
Существуют и дидактические формы и средства воспитания, в которой применяются наглядные пособия иллюстрации, игры.
Существует множество подходов к обучению арифметики и формированию у детей элементарных знаний о математических понятиях. Детей обучают счёту, показывают отличительные моменты цифр: больше, меньше, чётные, нечётные цифры.
Для достижения результатов используют различные материалы: счётные палочки, природные материалы, учат считать и распознавать деньги.
Детей учат распознавать геометрические фигуры: круг, квадрат, треугольник и др. Так же дети должны осваивать и мерные величины: метр, сантиметр, килограмм, грамм и т.д. При проведении занятий детей учат не только показательной арифметике, но и производить арифметические действия в уме. Учат находить и сопоставлять предметы в быту, на улице и в природе. Например: три берёзы под окном.
Дети по выпуску из детского сада должны быть готовы к первому классу, а так же адаптированы к внешней самостоятельной жизни. Они ведь не всегда и везде будут ходить за ручку с мамой. Часть времени дети будут проводить самостоятельно и полагаться на свои навыки – это и есть процесс развития. В последние годы в практику введено такое понятие как предматематическая подготовка.
Подготовка ребёнка и его познавательного мира к математическому образу мышления. Разнообразные способы формирования познавательной сферы позволяют ребёнка подготовить к изучению предмета – математики. При организации занятий происходит воздействие на наглядное и логическое мышление, память, творческое воображение, восприятие, произвольное внимание дошкольника.
Задачей такого воспитания служит активизация мышления дошкольника, стремления преодолевать трудности, потребностей в решении разного рода умственных задач. Решение таких задач воспитания дошкольников очень сложная работа для воспитателя и требует комплексного подхода, и только систематические занятия позволят осуществить своевременное математическое развитие детей-дошкольников.
Способности каждого ребёнка зависят от его индивидуально-психологических особенностей. Математические способности не могут быть врождёнными, так как врождённые бывают только анатомически-физиологические особенности человека. Математические – это специальный вид способностей, они зависят от интегрального качества ума и развиваются в процессе математической деятельности.
Способности человека могут проявляться в различных областях, и здесь, как и все, математические способности выявляются в процессе деятельности дошкольника. Наиболее благоприятным периодом для развития способностей считается дошкольный возраст.
Дети в дошкольном возрасте наблюдают и подражают взрослым, они наблюдают за каждым действием и внимательно слушают, что говорит воспитатель и это важное свойство. Детей надо учить самостоятельно действовать, показывать и рассказывать о своих действиях. Дошкольников надо побуждать к тому, чтобы они повторяли за воспитателем о свойствах и качествах предметов. Игры с детьми должны содержать в себе математические действия.
Сравнительными действиями дети должны сами рассказывать воспитателю чем отличается та или иная фигура от другой. Если ребёнок затрудняется ответить, то значит у него не достаточно развита речь и восприятие, если ребёнок не хочет отвечать, то не cтоит на него давить и слишком настаивать. К цифрам у детей приходит осознание быстрее, если начинать использовать их в повседневной бытовой жизни, например: подай мне пожалуйста второй тапок.
Дети не сразу распознают числовую величину – один, потому, что она не используется в бытовой речи. Для них роль математических представлений в реальной жизни недоступна. Обычно детишки при этом говорят «подай мне пульт, или ложку или какую-то игрушку».
Осознание цифры один у детей приходит позже чем остальных цифр.
На первом этапе обучения у детей отсутствует внимательность и при перечислении порядковых номеров цифр они часто упускают из виду цифры: например называют — «1, 2, 4, 7».
В старших группах стоит учить детей множеству, разбивать множество на группы и объяснять им разницу между меньше и большей группой, а так-же равенство частей. Наглядно учить дошкольников последовательности счёта до десяти и в обратном порядке. Учить детей счёту на ощупь и на слух в пределах десяти.
Учить сравнивать количество предметов в разных группах, добавлять и убирать предметы до заданного количества.
Дети в дошкольном возрасте способны делить предметы и называть их части, например делить яблоко на дольки или пирог. Дошкольники должны понимать, что целое яблоко больше, чем долька или половина яблока. Старшегруппники должны освоить и понимать, что цифра 7 больше чем шесть, но меньше, чем восемь. К окончанию обучающего периода дошкольники должны уметь производить простые математические действия.
Формирование элементарных представлений о времени
В детском саду можно активно формировать у детей элементарные знания о времени. Дети должны знать все четыре части суток, называть, в какое время суток они ложатся спать, а когда пора вставать и идти в садик. В этом процессе большую роль отводят режиму дня в группе.
Воспитатель называет время суток и говорит, что детки должны сейчас делать: завтракать ли, идти ли на прогулку или у них будет сончас.
С детьми регулярно должны проводиться беседы, в которых упоминаются части суток, объясняется, почему то или иное действие должно осуществляться в определенное время суток (спать — ночью, умываться и завтракать — утром, гулять, обедать — днем, вечером — в кругу семьи играть, заниматься различными видами деятельности)
Советы родителям, которые хотят обучить ребенка основам математики
1. Поощряйте ребенка в его поиске ответов. Помогайте ему их находить, рассуждая. Не ругайте за ошибки и не смейтесь над неправильными ответами. Каждая попытка ребенка сделать вывод или решить задачу тренирует его способности и позволяет закреплять знания;
2. Используйте время совместных игр для развития необходимых навыков. Акцентируйте внимание на том, что было изучено ранее, показывайте, как на практике можно использовать новый и уже закрепленный материал. Создавайте ситуации, в которых ребенку нужно будет воспользоваться знаниями, чтобы достичь определенного результата;
3. Не перегружайте ребенка большим объемом новой информации. Дайте ему время осмыслить полученные знания через свободную игру;
4. Сочетайте развитие математических способностей с духовным и физическим развитием. Внедрите счет в занятия по физкультуре и логику в чтение, и ролевые игры. Разностороннее развитие ребенка — путь к полноценному развитию малыша. Физически и духовно развитый ребенок постигает математику намного легче;
5. При обучении ребенка старайтесь задействовать все каналы поглощения информации. Кроме устного рассказа, показывайте это на различных предметах, давайте возможность пощупать и оценить вес и фактуру. Прибегайте к разнообразным формам преподнесения информации. Показывайте, как можно использовать полученные знания в жизни;
6. Любой материал должен быть в виде игры, которая заинтересует ребенка. Хорошо способствует запоминанию азарт и вовлеченность в процесс. При отсутствии интереса ребенка к материалу остановитесь. Подумайте над тем, что было сделано не так и исправьте. Каждый ребенок индивидуален. Найдите способ, который подходит для вашего малыша и используйте его;
7. Важным для успешного освоения математических основ является умение концентрироваться на задаче и запоминать условия. Задавайте вопрос о том, что понял малыш из заданной задачи после каждого условия. Проводите работу по улучшению концентрации;
8. Прежде чем предлагать ребенку решать самостоятельно покажите пример того, как нужно рассуждать и решать. Даже, если ребенок уже не однократно проводит некую операцию по вычислению, напомните ему порядок действий. Лучше показать правильный ход действий, чем позволять ребенку закреплять неправильный подход;
9. Не заставляйте ребенка заниматься, если он не хочет. Если малыш хочет играть, то дайте ему эту возможность. Предложите позаниматься спустя некоторое время;
10. Старайтесь разнообразить знания в одном занятии. Лучшим вариантом будет, если в течение дня вы уделите немного внимания самым разным областям математических знаний, чем, если будете заучивать однотипный материал, доводя его до автоматизма;
11. Задача родителя в дошкольном возрасте не научить считать и проводить вычисления, а в развитии способностей. Если вы не научите ребенка складывать и отнимать до школы – не страшно. Если ребенок обладает математическим мышлением и умеет делать выводы, то он сможет постигнуть любые сложные операции быстро и в школе.
Какие книги помогают развивать математические способности
Решение вопроса о научении математике ребенка до 7-ми лет при помощи книг начинается еще с раннего возраста. Так, например, сказка «Теремок». В ней появление различных персонажей происходит по мере увеличения в размере. На этом примере можно научить ребенка понятиям большой — маленький. Попробуйте поиграть в эту сказку в бумажном театре. Предложите ребенку расставить фигуры героев сказки в правильном порядке и рассказать историю. Сказка «Репка» также обучает ребенка понятиям больше и меньше, но ее сюжет развивается от обратного (от большого к меньшему).
Полезным с математической точки зрения будет изучение сказки «Три медведя» через понятия большой, средний и маленький, ребенок с легкостью осваивает счет до трех.
При подборе книг для чтения ребенку обращайте внимание на следующее:
- Наличие счета в книге и возможности проведения сравнения героев по некоторым признакам;
- Изображения в книге должны быть крупные и интересные. По ним можно показать ребенку, какие геометрические фигуры используются для создания разных предметов (дом – треугольник и квадрат, голова героя – круг и т.д.);
- Любой сюжет должен развиваться линейно и содержать определенные выводы в конце. Избегайте книг со сложным сюжетом, который развивается не линейно. Приучайте ребенка к тому, что любое действие имеет свои последствия и каким образом нужно делать выводы. Такой подход поможет легче понять принципы логического мышления;
- Книги должны быть подобраны по возрасту.
В продаже есть большое количество различных изданий, позволяющих на примерах героев ознакомиться с большинством математических операций и терминами. Главное, обсуждать с ребенком прочитанный материал и задавать наводящие вопросы, которые будут стимулировать развитие математических способностей.
Приобретайте методические книги для развития математических способностей у ребенка по его возрасту. Сейчас есть большое количество различных материалов, которые содержат в себе задания на развитие математических способностей ребенка. Привлекайте такие издания в игру. Напоминайте ребенку о тех заданиях, которые он выполнял ранее по такому изданию для решения новых задач.
Развить у ребенка математические способности несложная задача. Ребенок до 7-ми лет сам ищет новые знания и рад, когда ему их преподносят в игровой форме. Найдите вариант занятий, который подходит вашему малышу и постигайте математические основы с удовольствием.
Заключение
Несмотря на то, что далеко не каждый ребенок обладает математическим складом ума и изучение науки может представлять для него трудности даже на начальных этапах, специальные упражнения, проводимые в игровой форме, могут существенно облегчить его. А заодно – превратить его в интересную и увлекательную игру.
Занятия, проводимые в игровой форме, позволяют ребенку приучить себя к контролируемой деятельности, прививая ему интерес к обучению. Также математические игры благотворно влияют на развитие памяти, мышления, речи, а также творческих способностей. А затем помогают усвоить и более сложные категории, такие как цифры, числа, счет и т.д. Ребенок готовит руку к письму, учиться ориентироваться в пространстве.
[spoiler title=»Источники»]
- https://detki.guru/vospitanie/soderzhanie-matematicheskogo-razvitiya.html
- https://kukuriku.ru/obuchenie/matematika/varianty-razvitiya-matematicheskix-sposobnostej-u-detej/
- https://alldoshkol.ru/sposobnosti/razvitiye-matematicheskich-sposobnostey
- http://karkusha.su/formirovanie-matematicheskih-predstavleniy-u-doshkolnikov/
- https://birth-info.ru/1159/parenting-Matematicheskoe-razvitie-detey/
- https://melkie.net/zanyatiya-s-detmi/formirovanie-elementarnyih-matematicheskih-predstavleniy-u-doshkolnikov.html
- https://zen.yandex.ru/media/adept/razvitie-matematicheskih-sposobnostei-u-doshkolnikov-5df674650a451800b1170506
- https://adukar.by/news/razvitie-matematicheskih-sposobnostej-u-doshkolnikov
- https://detki.guru/razvitie-rebenka/zanyatiya-s-rebenkom/razvitie-matematicheskih-sposobnostej-detej-doshkolnogo-vozrasta.html
- https://www.kp.ru/putevoditel/obrazovanie/kak-nauchit-rebenka-matematike/
- https://ped-kopilka.ru/obuchenie-malyshei/uroki-matematiki-dlja-detei-doshkolnogo-vozrasta/metodiki-ranego-obuchenija-detei-matematike.html
- https://podrastu.ru/razvitie/matematicheskoe-razvitie-doshkolnikov.html
[/spoiler]